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ABSTRACT

Closed form, approximate functions for estimating the variances and degrees-of-
freedom associated with the slow crack growth parameters n, D, B, and 4" as measured
using constant stress rate (“dynamic fatigue”™) testing were derived by using propagation
of errors. Estimates made with the resulting functions and slow crack growth data for a
sapphite window were compared to the results of Monte Carlo simulations.

The functions for estimation of the variances of the parameters were derived
both with and without logarithmic transformation of the initial slow crack growth
equations, The transformation was performed to make the functions both more linear and
more normal,

Comparison of the Monte Carlo results and the closed form expressions derived
with propagation of errors indicated that linearization is not required for good estimates
of the variances of parameters n and D by the propagation of errors method. However,
good estimates variances of the parameters B and 4™ could only be made when the
starting slow crack growth equation was transformed and the coefficients of variation of
the input parameters were not too large. This was partially a result of the skewed
distributions of B and 4". Parametric variation of the input parameters was used to
determine an acceptable range for using closed form approximate equations derived from
propagation of errors.
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1. INTRODUCTION

Slow crack growth (SCG) parameters for glasses and ceramics are determined
by either strength-based or fracture mechanics based test methods. Strength-based
methods employ smooth test specimens, such as flexural beams or tensile specimens, and
estimate SCG material parameters from strengths measured over different time intervals.
Loading is generally done in a static fashion (i.e., “static fatigue”) or in a continuously
increasing fashion (i.c., “dynamic fatigue”). The strength-based methods are practical
because the tests are simple, inexpensive, and usually accomplished quickly.

Strength-based methods directly sample the preexisting flaw distribution within
or on the surface of the test specimens. Thus the cracks develop from at least some of the
same sources that are expected to cause failure in 2 component manufactured in a similar
fashion from the same material. Only the strength-based approaches have been
standardized [1-5], and, as a result of the critical nature of flight hardware, data for design
of such components is generally generated with standardized test methodologies.

The disadvantage of strength-based methods is that the SCG results are subject
to the scatter inherent in the strength distribution of the material. Thus the estimation of
SCG parameters from strength data can result in poor statistical reproducibility, and an
estimate of the parameter variances is very necessary to the design process. In this
respect, fracture mechanics based approaches, which usually exhibit lower scatter, in
combination with strength-based approaches might yield the most confidence,

Closed form, approximate standard deviation functions for the SCG parameter B
were previously derived for both the “static” and the “dynamic” loading cases [6-9], and
the accuracy of the solutions were confirmed to some extent via Monte Carlo simulations
[8]. Varying degrees of success have been reported in using the approximate solutions
for the design of flight hardware [10, 11].

The variance equations derived previously are very general and were determined
prior to standardization of the associated test methodologies. Thus the functions are not
particularly convenient for making rapid estimates from the SCG parameters derived with
current testing standards [3]. Therefore, convenient closed form expressions were
derived in terms of the SCG parameters determined with one of the standard methods [3]
and the resulting functions were compared to Monte Carlo simulations. In addition to
deriving a variance function for the logarithm of the parameter 8 as done previously [7],
functions for the variance of the parameter 4" and its degrees-of-freedom were derived.
The functions are needed for input to the computer code FLAGRO [12].

2. DERIVATION OF CLOSED FORM FUNCTIONS

One straightforward method for determining the standard deviation (i.e., the
square root of the variance) associated with a dependant variable is the generation of
system moments or the law of propagation of ervors (POE). Itis based on a Taylor series
expansion of the dependant variable about the means of the independent variables. A
specific knowledge of the component distributions is not necessary for application of the
technigue. The expansion is usually truncated at the first term, and thus the functions
being analyzed need to be relatively linear and the C¥’s (coefficients of vanation; i.e., the
standard deviation divided by the mean) of the independent variables should not be too
large. A rule-of-thumb that the CV’s not exceed ~10% has been recommended [13].



Such a CV is relatively small for sirength distributions of many ceramics, and
corresponds to a 2-parameter Weibull modulus of ~12. For nonlinear functions, the
results can be improved by transforming the function to a more linear space, This results
in standards deviation parameters in the transformation space (e.g., standard deviation of
the logarithm of B, S, , rather than the standard deviation of B, $Dg). In addition, for
functions with small first derivatives in the range of interest {(e.g. large values of ),
higher order terms in the expansion cannot readily be ignored [14] and POE may become
inaccurate. If the input variables are normal, then POE estimates are approximately
normal {14]. Thus, any transformation should simultaneously accomplish two goals:
more linear functions in specific independent variables, and more normally distributed
independent and dependant variables. The law of propagation of errors implies that the
estimated value and the associated standard deviation of a system can be estimated from
[15]:
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where Efx,) is the expected value of variable x; (i.e. the mean), SDy; is the standard
deviation of variable x;, and Cov(x;, x;) is the covariance between x;andx;. Any number
of higher order terms can be included in estimates of the standard deviations; however,
estimation of the moments associated with them is cumbersome, and terms greater than
secontd order in equation (2) are frequently dropped for convenience. Also, the second
term in equation (1) is usuvally dropped. This makes transformation an appealing
approach for improving the accuracy of the technique.

2.1 Constant Stress Rate Testing

For most ceramics and glasses, the slow crack growth rate above the slow crack
growth limit is expressed by the following power-law relation:

da M Kr
v=——=AK] = A* [—- (3)
7 I [K;c]

where v, g and ¢ are crack velocity, crack size and time, respectively. A and # are the
material/environment dependent SCG parameters and K; and Ky are, respectively, the
Mode 7 stress intensity factor and the critical stress intensity factor or fracture toughness of
the material,

For constant stress rate or “dynamic fatigue™ testing, the corresponding fracture or
fatigue strength, gy, is expressed as a function of stress rate, &, as follows [16]:
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where o; is the expected value of the inert strength and B is a parameter associated with
4, n, fracture toughness, and the geometry correction factor, ¥, for the stress intensity
factor:
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The American Society for Testing and Materials (ASTM) approved a full-
consensus standard [3] for estimating the parameters » and D from equations (4) and (6).
However, several design codes [12, 17] require not only the parameter », but either the
fatigue parameter B or 4 as defined in equations (5) and (3). Further, as mentioned
previously, the standard deviations of these parameters are necessary in estimating
confidence intervals on SCG predictions and it is convenient to calculate the parameters and
standard deviations directly from the regression statistics of the linearized form of equation
(4) as defined by the ASTM standard {3).

In the ASTM standard, estimates of the SCG parameters are determined from
the slope, &, and the intercept, #, of a plot of logy oy versus logio & by writing
equation (4) as
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In the linear regression analysis, the dependent variable is Jogyy 0y and the independent
variable is log;e & .

2.2 Parameters Determined Without Transformation

For constant stress-rate or “dynamic fatigue” testing, application of equations (1)
and (2) without transformation gives the resulting SCG parameters:
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The statistics for parameter 4” corresponding to equation (3) can be calculated from
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The use of equation (2) for deriving standard deviation functions assumes that a single
term in the Taylor series expansion is sufficient. In addition, it was assumed that only the
regression parameters & and f are correlated, and that the estimated parameters can be
substituted for the expected values, The “hats” and “bars” used to indicate “estimate”
and “mean” (e.g., # and &, ;) have not been included for brevity.

The derivations of equations (12) and (14) only consider the first term in
equation (1). If all three terms of (1) are retained, the following functions are obtained:
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2.3 Parameters Determined With Transformation

Equation (1) becomes exact in the case of the dependent variable being a linear
function of the independent variables. Equations (12) and (14) were transformed by
equating the logarithms of each side:

lnB=lna+£lnlO—[l—3)lno". (18)
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For the purposes of differentiation, the equations were taken as linear in & £ inKy, and
Ing,. If all the terms in equation (1) are used to estimate the parameters, then
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Application of equation (2) to (18) and {19) gives
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The estimated standard deviations of /n4" and /nB differ from the estimated standard
deviations of 4" and B nominally by factors of 4" and B, respectively.

3. Monte Carlo Simulation

The computing power available today makes Monte Carlo simulation an
appealing technique for parameter estimation. In this technique, values for the
independent variables are chosen at random from specified distributions and a value of
the dependant parameter is calculated. Thus, knowledge of, or assumptions about the
distributions of the independent parameters is required. The technique is repeated a large
mumber of times, and the statistics of the resultant data pool are calculated. The
simulations in this work were repeated 50,000 times in order to insure a reasonable
sample size at common probability limits.

3.1 Input Data

Data for input to the simulation came from fracture toughness, inert strength,
and constant stress rate SCG testing of sapphire for a window application [18]. Linear
regression of the data according to equation (6) resulted in the parameters in Table 1.
The distributions of & fand X, were assumed to be normal. Although the distribution
of &ris treated as normal, values less than zero are physically unrealistic as they imply no
stress corrosion, and the distribution could be truncated for values less than zero.
Additionally, values of greater than ~0.1 imply that the assumption of » > ~10 used in
derivation of the slow crack growth laws [16] is violated. To determine the significance
of truncation, Monte Carlo runs were performed with and without truncation of the
distribution of & below 0.01 and below zero. No differences were noted in the estimates
and standard deviations, Truncation was not performed in subsequent runs. In addition
to the SCG and fracture toughness data, inert strength data was generated by testing in
high purity dry nitrogen. The strength data was fit to both 2-parameter and 3-parameter
Weibull distributions. The resultant parameters are summarized in Table 2.



Table 1. Estimated means and standard deviations used for normal distributions.

Parameter Mean Standard Coefficient of
Deviation Variation, %
Estimated slope, & 0.05341 0.00367 6.9%
Estimated intercept, 2.9131 0.00654 0.2%
Fracture toughness, K, MPavm 2.51 0.12 4.8%
Geometry Correction, ¥ 1.951 0 0
Inert Strength, o, MPa 1108 93.5 8.4%

Table 2. Weibull parameters for inert strength distributions.

Inert Strength Threshold Characteristic Weibull
Weibull Parameters | Strength, MPa Strength, MPa Modulus
O Op m
Two Parameter 0 1148.8 14.6
Three Parameter 738.2 359.0 3.89

3.2 Estimation of Covariance

The dependence of the value of £ upon the value for & was included in the
Monte Carlo simulations by using a closed-form covariance term. Many existing
computer codes calculate regression statistics such as the standard error of the parameters
(i.e. the square root of the variances). Thus the covariance, Cov(er, f), can easily be
calculated from

Covia, B)=-V(a)iog& (24)

where P(a) is the variance of the regression slope (i.c. the standard error squared), and
log & is the mean of the log of the stressing rates applied. Note that the ASTM standard

[3] uses base 10 logarithms for plotting and regression, and thus equation (24) uses base
10, The covariance between the two can also be found from [7,8]:
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2
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and ¢is the standard error of regression, & ; is the " value of stressing rate, and .J is the
number of data points.
4. RESULTS

4.1 Results without Transformation

The distributions for n, D, B, and A" from the Monte Carlo simulation are shown
in Figures 1-4, The distributions for » and D are relatively symmetric, whereas the
distributions for B and 4 are extremely skewed to the left.

The estimates of the parameters n, D, B, and 4" and their variances from the
Monte Carlo simulation are compared to the functions that were derived with the law of
propagation of errors in Tables 3-6. This comparison shows good agreement between the
closed-form estimates and the Monte Carlo results for the parameters »# and D, as
summarized in Table 3.

Table 3. Comparison of estimates for parameters # and D

Parameter Monte Carlo Monte Carlo POE Estimate
(repeat run)
Hoean 17.81 17.81
i 17.72
Apnedian 17.76 17.72
SD, 1.285 1.306 1.286
Doen 819.2 818.7
R18.7
Doodicn 818.9 818.5
SDp 12.34 12.32 12.34
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Figure 1: Histogram for slow crack growth parameter » from Monte Carlo simulation based on constant stress
rate testing of sapphire in water.
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Figure 2: Histogram for slow crack growth parameter 2 from Monte Carlo sitmulation based on constant stress
rate testing of sapphire in water.
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Figure 3: Histogram for slow crack growth parameter 8 from Monte Carlo simulation based on constant sress
rate testing of sapphire in water.
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Figure 4: Histogram for slow crack growth parameter 4 * from Moute Carlo simulation based on constant stress
rate testing of sapphire in water.
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For B and 4, the POE solutions and the Monte Carlo simulation agree only when median
values are calculated from the Monte Carlo data. This is a result of the distributions of 4”
and B being very skewed, The skewness is the result of the highly nonlinear nature of the
functions and the associated sensitivity to small variations in the material properties,
especially the inert strength. Note that the median values from the 3-parameter Monte
Carlo match well with the POE solutions when the mean inert strength is used in the
closed form solutions, and that the median values of the 2-parameter Monte Carlo match
well with the POE solutions when the median inert strength is used with the POE
solutions, This occurs because the 3-parameter Weibull distribution is relatively
symmetric, whereas the two-parameter Weibull distribution exhibits a large shape
parameter and a more skewed distribution. In general, the standard deviations from the
two approaches do not agree.

Table 4, Comparison of POE and Monte Carlo estimates for parameter B.

Parameter POE POE Monte Carlo | Monte Carlo
{(mean ¢;)! (median o; ) 3-parameter 2-parameter
Weibull Weibull
Parameter via eq. (12); SD via eq. (13) without the Cov term:
Booan P21 1)) < S — 742,130 251,011
Buedian | —— 219,009 248,387 204,666
SDy 359,656 312,025 1,695,835 20,138,202
Parameter via eq. (12) plus a Cov term; SD via eq. (13):
Bomean 268,650 807,512 1,872,491
Bmedian 234,651 264,832 236,521
SDp 373,709 324,638 1,838,818 32,624,604
Parameters with both second order terms (eq 16):
Briean 513,825 1,730,407 5,709,024
Boedian 444 878 512,423 443,339

i, Mean value of &; = 1108.05 MPa.
2, Median value of g; = 1117.8 MPa
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Table 5. Comparison POE and Monte Carlo results for parameter 4",

Parameter POE POE Monte Carlo | Monte Carlo
(mean o;)! {median g; )* 3-parameter 2-parameter
Weibull Weibull
Parameter via eq. (14); SD via eq. (15) without the Cov term:
A voan 8381E-07 |  —— 2.175E-06 1.863E-06
A median — 9.613E-07 8.494E-07 9.618E-07
SD4* 1.1836E-06 1.349E-06 4.721E-06 3.112E-06
Parameter via eq. (14) plus a Cov term; SD via eq. (15):
A e 9.047E-07 2.782E-06 2.071E-06
A *median ------- 1.040E-06 9.223E-07 1.042E-06
SD 4+ 1.222E-06 1.395E-06 8.180E-06 3.644E-06
FParameters with both second order terms (eq. 17);

A mean 1.712E-06 4.662E-06 4.003E-06
A'vedin | e 1.957E-06 1.707E-06 1.947E-06

. Mean value of o; = 1108.05 MPa. 2. Median value of ¢; = 1117.8 MPa

4.2 Results with Transformation

The results in Tables 4 and 5 indicate that POE estimates for B and 4" are not
acceptable without transformation. The resultant distributions for {nB and Ind” are shown
in Figures 5 and 6, and the results from POE and Monte Carlo simulations are compared
in Tables 6 and 7. . Logarithmic transformation of the SCG equation brings the two
methods into good agreement, As seen earlier, the Monte Carlo simulation using a three-
parameter Weibull distribution compares well with POE results that use the mean value
of the inest strength. And the Monte Carlo simulation using a two-parameter Weibull
distribution matches the closed form results calculated with the median inert strength,
The addition of the second order terms in equation (1) lowered the estimated B and 4 by
~4%. Generaliy the standard deviations from POE are ~5% smaller than those from
Monte Carlo,

13
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Figure 5: Histogram for slow crack growth parameter M(B) from Monte Carlo simulation based on constant
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Table 6. POE and Monte Cario results for parameter In(B).

Parameter (m:a?lEO'- ! (me;gf o 1\34-;2;2;::: I:’Z/I—;))l;:'ean(i:g?
: ’ Weibull Weibull
Parameter via eq. (18); SD via eq. (22) without the Cov term:
In(B)mean 1243 | — 12.46 12.45
WmBedian | == 12.30 12.44 12.32
SDiug) 1.452 1.456 1.518 1.553
Parameter via eq. (18) plus a Cov term; SD via eq. (22):
I0(B) e 12.42 12.43 12.43
(B ) median e 12,28 i2.41 12.30
SD,',,(B) 1.507 1.512 1.511 1.563
Parameters with both second order terms (eq. 20):
In(B)mean 15 1 S I— 12.43 12.43
In(B)median | === 12.25 12.41 12.30
1. Mean value of &; = 1108.05 MPa 2, Median value of s = 1117.8 MPa
Table 7. POE and Moate Carlo results for parameter (4"
Parameter POE POE Monte Carlo Monte Carlo
(mean ¢;)' | (median ;¥ | 3-parameter | 2-parameter
Weibull Weibull
Parameter via eq. (19); SD via eq. (23} without the Cov term:
In(A I mean -13.99 -14.02 _14.01
(A median | == —~ -13.85 -14.00 -13.87
SDipgas 1.449 1.451 1.488 1.524
Parameter via eq. (19) plus a Cov term; SD via eq. (23):
(A ) ean 1398 | e -13.99 -13.99
A Jmedian | —— -13.84 -13.97 -13.85
SDpiav) 1.478 1.482 1.480 1.534
Parameters with both second order terms (eq. 21):
(A Jmean _13.95 [13.99 -13.99
INA ) pedian | e -13.81 -13.97 -13.85

1. Mean value of ¢; = 1108.05 MPa 2. Median value of &; = 1117.8 MPa
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It is noteworthy that the value of B estimated in log space (i.e. for InB=72.43, B =
250,196) either with or without the second order terms of equation (20) is very similar to
the direct estimate of B (251,203) only when the second order terns are not included in
the direct estimate. If the second order terms are included, the direct estimate of B
becomes twice as large (251,203 vs. 513,825). Evidently, the best estimates of B and A
without linearization are generated by using the initial algebraic formula and Cav,

4.3 Generation of Confidence Bands

For a small data set (< 40), probability limits are placed on parameters by using
the Student’s ¢ distribution: '

BUpper = EXP[]” B i r(“S"'Dn’m!? )] ' (27)
Lower

Calculation of ¢ requires the DOF (degrees of freedom) ¢, which is not readily estimated
for a complex system. Welch {19] gave a formula for estimating the DOF when multiple
components of variation are involved in comparison of two values. Jacobs and Ritter [8]
generalized the Welch formula for estimation of the DOF of populations with different
variances:

[spif _ ZM (8)

s TP

where @ represents the DOF for the system variable of interest, SD; represents the
component of variation contributed to the system by variable i, and ¢ represents the DOF
of the components adding variation to the system. For SCG parameters, the two
components adding variation are the inert strength and the regression parameters & and 5.
Application of (28) to (22) leads to
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and results in 47 DOF in $D;,p base on 14 data points in inert strength (9 = 13) and 41
data points in the regression (¢,s = 39). Application of equation (28) to equation (23)
leads to
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If, however, sufficiently large data sets are used, then the nommal distribution can
reasonably be assumed, and two standard deviations correspond to 95% confidence, etc:

= EXP[lnB+25D, ,]. 31)

Bbfppergs%
Lower95%

Probability limits calculated on the parameters with equation (29) and from the Monte
Carlo data are summarized in Tables 8 and 9. The POE and Monte Carlo 3-parameter
results agree reasonably. However, the 2-parameter Monte Carlo results are less
conservative (faxlure time is proportional to B) and result in larger values for B and
smaller values for 4. This appears to result from a more skewed distribution of /n8 that
results in larger 95% values. Use of the median strength in the POE gives the most
conservative result (i.e. the smallest B and largest A” values). It is noteworthy that the
standards for determining the inert strength and the SCG parameters recommend using 30
and 40 test specimens, respectively. Thus equation (31) is likely sufficient for most
purposes. As the least value of B will produce the shortest life, a one-sided limit may be
more appropriate in design than the two-sided limits presented in Tables 8 and 9.

Table 8, POE and Monte Carlo 95% probability limits for parameter B based on
equations (18}, (20), (22) and (27).

POE POE Monte Carlo | Monte Carlo
(mean o; )1 (median ¢;)* | 3-parameter | 2-parameter
Weibull Weibull
Parameters via eq. (18); SD via eq. (22) without the Cov term:
Lower
Bound 12,258 10,601 13,202 16,448
gpper 5,147,885 4,519,110 5,003,181 8,361,753
ound

Parameters with second order terms (eq. 20); SD vig eq. (22):

Lower

Bound 10,485 9,038 14,885 18,528
Upper 5,540,317 4,871,973 5,1278,769 8,509,182
Bound

1. Mean value of ; = 1108.05 MPa,

2. Median value of &; = 1117.8 MPa
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Table 9. POE and Monte Carlo 95% probability limits for parameter 4" based on

equations (19), (21), (23) and (27).

POE POE Monte Carlo Monte Carlo
(mean o;)' (median o; Y | 3-parameter 2-parameter
Weibull Weibull

Parameters via eq. (19); SD via eq. (23} without the Cov term.

Lower

3.750x 10 4276 x 10 4286 x 10°® 2.567 x 107
Bound
Upper 1.873x10° | 2.160x 10° 1.459 % 10° 1.163 x 107
Bound

Parameters with second order terms (eq. 21); 8D via eq. (23):

Lower

3.661x 10° 4,166 x 10°* 4.438x 107 2.637x10*
Bound
Upper 2075x10° | 2405x10° | 1665x10° | 1.328x10°
Bound

1. Mean value of ¢; = 1108.05 MPa. 2. Median value of g; = 1117.8 MPa

4.4 Range of Applicability for POE

To determine the effect of input variance on the accuracy of the equations
derived from POE, the CV’s of & £ and o; were varied above that observed, and the
standard deviation of /uB was calculated. In order to calculate the 5Dy, the standard
deviation of Ing; is needed. This was calculated from a Monte Carlo simulation that used
the characteristic strength and a 2-parameter Weibull modulus corresponding to the
desired CV as calculated with the approximation m = 1.2/C¥V [7, 20]. The strength data
resulting from the Monte Carlo simulation was converted to /ng; and the corresponding
SDy, s was calculated.

The ratio of the standard deviations from the POE and the Monte Carlo
approaches are compared in Table 10. Generally, the POE method produced smaller
values that were within ~15% of those from Monte Carlo. As might be expected, better
comparisons occur for small CV'’s of v and # Surprisingly, the best results oceur for
large and intermediate standard deviations of the inert strength. This may be the result of
the logarithmic transform being excessive.

To investigate the applicability of the equations for larger » values, the
sensitivity for an alumina with n = 47 [21] was determined. The distribution ¢ of was
truncated for values of & < 0.008. Again, relatively good comparisons were obtained.
However, it is noteworthy that the material had a large Weibull modutus (~25) and low
CVqand CVg Despite the small initial CV’s, the size of the estimated SDy,p relative to
InB tends to become quite large as the input C¥ for the inert strength is increased to
values common for ceramics, and the mean and median values of /nB as calculated via
Monte Carlo tend to diverge. For example, with CV, = 15%, C¥Vg= 0.5%, and CV,=
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30%, equations (18) and (20) give /nB = -5.67 and InB = -6.14 respectively with the mean
strength, and /nB = -5.93 and InB = -6.41 respectively with the median strength. Whereas
Meonte Carlo simulation is much less conservative, giving a mean value of InB = -0.46
and a median /nB = -2.21. In this case, despite the transformation to logarithmic space,
the distributions of InB and Ind” are skewed as compared to those for n = 18, More

investigation with large values of # is needed.

Table 1. Ratio of $Dy,, a3 calculated from POE via equation (22) and Monte Carlo

simulation with m = 1.2/CV.

SDywon/SDsme) | cy, = 10% 10% 20% 20%
CVy—> ~m | CV= 0.5% 1.0% 0.5% 1.0%

10% —> m=12 0.94 0.92 0.82 0.77

15% —> m =8 0.96 0.94 0.87 0.82

20% —> m=6 1.00 0.98 0.91 0.87

0% —> m=~4 0.98 0.97 0.91 0.89

Table 11. Ratio of SD;p as caiculated from POE via equation (22) and Monte Carlo
simulation with m = 1.2/C¥. Calculations are for an alumina [21] with n =473, a@=
0.0207 + 0.0020, = 2.2747 + (,0048, a median inert strength of 278.6 MPa, and a mean
inert strength of &; = 277.0 MPa + 12.

SDapon/SDsaucy | CVa= | 10% 10% 15% 15%

CV,—> ~m | V6= | 025% 0.5% 0.25% 0.5%
10% > m=12 0.99 0.98 0.95 0.92
15% > m=8§ 1.00 0.99 0.96 0.95
200> m=6 1.00 0.98 0.97 0.95
300%™ m=4 0.98 0.98 0.96 0.96
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5, CONCLUSIONS

Two methods were used to approximate variances of SCG data: Propagation of
errors and Monte Carlo simulation, Transformation of the functions describing the
parameters is necessary to reasonably predict the standard deviations of parameters nB
and In4". The addition of a covariance term slightly improved estimations of the
standard deviations of /n(8) and in(4’) for two cases considered (» = 18 and n =47).

The addition of second order terms made little difference for POE estimation of
the parameters /n(B) and In(4’) for sapphire with » = 18. For an alumina with n =47, the
differences were significant, and the POE estimates of /nB and in4" tended to be very
conservative relative to Monte Carlo simulations.

Propagation of errors is a useful approximation for estimating variances of slow
crack growth parameters, however, it is an approximation that resuits in estimates within
~15% of Monte Carlos simulations for the range of variances commonly encountered in
SCG testing of ceramics. Further study with large » values is needed. Equations (8),
(11), (22), and (23) provide reasonably accurate functions for determining standard
deviations of slow crack growth parameters determined from constants stress rate testing.
For very critical applications, it may be more appropriate to use Monte Carlo or
Bootstrap simulations, especially considering the availability of computing power.
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